Irrotational Binary Neutron Stars in Quasiequilibrium in General Relativity
نویسنده
چکیده
Neutron stars in binary orbit emit gravitational waves and spiral slowly together. During this inspiral, they are expected to have very little vorticity. It is in fact a good approximation to treat the system as having zero vorticity, i.e., as irrotational. Because the orbital period is much shorter than the radiation reaction time scale, it is also an excellent approximation to treat the system as evolving through a sequence of equilibrium states, in each of which the gravitational radiation is neglected. In Newtonian gravity, one can simplify the hydrodynamic equations considerably for an equilibrium irrotational binary by introducing a velocity potential. The equations reduce to a Poisson-like equation for the potential, and a Bernoulli-type integral for the density. We show that a similar simplification can be carried out in general relativity. The resulting equations are much easier to solve than other formulations of the problem.
منابع مشابه
Irrotational binary neutron stars in quasiequilibrium
We report on numerical results from an independent formalism to describe the quasiequilibrium structure of nonsynchronous binary neutron stars in general relativity. This is an important independent test of controversial numerical hydrodynamic simulations which suggested that nonsynchronous neutron stars in a close binary can experience compression prior to the last stable circular orbit. We sh...
متن کاملImpact of the nuclear equation of state on the last orbits of binary neutron stars
We present calculations of quasiequilibrium sequences of irrotational binary neutron stars based on realistic equations of state (EOS) for the whole neutron star interior. Three realistic nuclear EOSs of various softness and based on different microscopic models have been joined with a recent realistic EOS of the crust, giving in this way three different EOSs of neutron-star interior. Computati...
متن کاملBinary neutron star mergers in fully general relativistic simulations
We perform 3D numerical simulations for merger of equal mass binary neutron stars in full general relativity preparing irrotational binary neutron stars in a quasiequilibrium state as initial conditions. Simulations have been carried out for a wide range of stiffness of equations of state and compactness of neutron stars, paying particular attention to the final products and gravitational waves...
متن کاملDynamical determination of the innermost stable circular orbit of binary neutron stars.
We determine the innermost stable circular orbit (ISCO) of binary neutron stars (BNSs) by performing dynamical simulations in full general relativity. Evolving quasiequilibrium (QE) binaries that begin at different separations, we bracket the location of the ISCO by distinguishing stable circular orbits from unstable plunges. We study Gamma=2 polytropes of varying compactions in both corotation...
متن کاملBinary Neutron Stars Systems: Irrotational Quasi-Equilibrium Sequences
We report on numerical results from an independent formalism to describe the quasi-equilibrium structure of nonsynchronous binary neutron stars in general relativity. This is an important independent test of controversial numerical hydrodynamic simulations which suggested that nonsynchronous neutron stars in a close binary can experience compression and even collapse prior to the last stable ci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998